
Cloud Container Engine
Autopilot

Best Practices

Issue 01

Date 2025-01-03

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2025. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Deploying Jenkins in a CCE Autopilot Cluster.. 1
1.1 Overview.. 1
1.2 Resource and Cost Planning.. 6
1.3 Procedure... 8
1.3.1 Deploying the Jenkins Master in the Cluster..8
1.3.2 Configuring the Jenkins Agent..17
1.3.3 Building and Executing a Pipeline on Jenkins..27

Cloud Container Engine
Best Practices Contents

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

1 Deploying Jenkins in a CCE Autopilot
Cluster

1.1 Overview
Jenkins is an open-source automation server widely used for continuous
integration (CI) and continuous delivery (CD). When your code library changes,
Jenkins helps you automatically build, test, and deploy applications, improving
development efficiency and product quality. Jenkins can be deployed in different
environments. Each environment has their advantages. For details, see Table 1-1.
In addition, Jenkins can be deployed on a single node or in a distributed mode.

● Single-node deployment: Jenkins runs as an independent instance. All builds
and operations are performed on the Jenkins master, which is responsible for
job scheduling, system management, and execution of specific build jobs. All
jobs are running on the same node, which may cause excessive consumption
of system resources. In addition, as the project scale and the number of build
jobs increase, single-node deployment may become a performance
bottleneck. This deployment mode is suitable for small teams or individuals.

● Distributed deployment: The Jenkins master is responsible for job scheduling
and system management, and the Jenkins agents for executing specific build
jobs. The Jenkins master receives build requests from users and distributes
jobs to available Jenkins agents. Each Jenkins agent can be independently
configured to support different OSs and build tools, providing flexible build
environments and scalability. In addition, the separation of management and
execution can effectively improve system performance and response speed.
This mode is suitable for large-scale production environments, especially
when there are a large number of build jobs or there are high requirements
for concurrent builds.

This section uses distributed deployment as an example to describe how to deploy
and use Jenkins in a CCE Autopilot cluster.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

Table 1-1 Comparisons of environments where Jenkins will be deployed

Item CCE Autopilot CCE
Standard/CCE
Turbo

VMs Physical
Machines

Scenar
io

CI/CD and
scenarios that
have high
requirements
for automation
management.

Large-scale
distributed
environment
and CI/CD.

Small- and
medium-sized
projects, or
scenarios where
multiple teams
or projects share
one physical
machine.

Scenarios that
have high
requirements
for
performance
and hardware,
require stable
resources, and
do not require
frequent
expansion.

Perfor
mance

High High Relatively low High

Resour
ce
utilizat
ion

High High Relatively low Low

O&M Simple Simple Less complex Complex

Scalabi
lity

Auto scaling in
seconds

Auto scaling in
minutes

Relatively poor Poor

Availa
bility

High High High Relatively low

Isolati
on
level

High Relatively low High High

Precautions
CCE does not provide maintenance and support for Jenkins. The maintenance is
provided by the developers.

Basic Concepts of Jenkins
● Jenkins master: the core of the Jenkins system. It manages and coordinates all

jobs. It can be regarded as a manager that does not directly execute jobs.
Instead, it allocates jobs to other workers (Jenkins agents).

NO TE

The Jenkins master provides a web page for users to perform operations and view the
task progress.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

● Jenkins agent: a pod or machine that Jenkins uses to execute jobs. Multiple
Jenkins agents can be configured at the same time to share the load and
improve job concurrency and efficiency.

● Plugin: a component that extends the functionality of Jenkins. Jenkins allows
users to install different plugins as needed to implement functions such as
versioning, build tools, and deployment. In addition, plugins can integrate
different tools and technologies, such as Kubernetes, Git, and Maven. The
Kubernetes plugin is the key to information exchange between Jenkins and
the cluster.

● Pipeline: an automated workflow that connects multiple phases (such as
build, test, and deployment) in the software development process to ensure
that each step can be automatically executed in a certain sequence and based
on certain rules. With the pipeline, you can deliver jobs to the Jenkins master
and use the pipeline script to define the entire automation process. The
Jenkins master executes the jobs based on the script.

● Cloud: Various cloud environments, such as clusters, containers, and VMs, can
be configured to flexibly use compute resources of external cloud platforms
and implement dynamic management of Jenkins agents.

Figure 1-1 Logical relationships between basic concepts

Solution Architecture

Figure 1-2 shows the steps for deploying Jenkins and Table 1-2 provides more
details.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Figure 1-2 Flowchart

Table 1-2 Procedure

Step Description Image

Deploying the
Jenkins Master
in the Cluster

● Install and deploy the
Jenkins master in the CCE
Autopilot cluster for
managing jobs.

● Use a browser to access
the Jenkins master through
the public IP address of the
load balancer.

jenkins/jenkins:lts
NOTE

jenkins/jenkins:lts indicates a
Docker LTS image. The LTS
version is a long-term release
provided by Jenkins. It is
relatively stable and will receive
security updates and bug fixes
for a longer time. It is suitable
for production systems that
require a stable environment.
For more information, see LTS
Release Line.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://www.jenkins.io/download/lts/
https://www.jenkins.io/download/lts/

Step Description Image

Configuring
the Jenkins
Agent

● Install the Kubernetes
plugin on the Jenkins web
page.

● Configure cluster
information in the cloud to
connect to the cluster.

● Configure a pod template
for dynamically creating
Jenkins agent pods in the
cloud.

The Jenkins agent requires
three images:
● jenkins/inbound-

agent:latest: used to
connect the Jenkins agent
and Jenkins master to
ensure continuous job
execution.

● maven:3.8.1-jdk-8: used
to execute packing jobs in
the pipeline.

● gcr.io/kaniko-project/
executor:v1.23.2-debug:
used to build and push
Docker images in the
container.

Building and
Executing a
Pipeline on
Jenkins

● Compile a pipeline script
on the Jenkins web page,
define the automation
process of the entire job,
and compile the job into a
language that can be
understood by the Jenkins
master.

● The Jenkins master
coordinates the execution
process of the pipeline,
dynamically creates
Jenkins agents (in the form
of pods) in the cluster
through the Kubernetes
plugin, and distributes jobs
to Jenkins agents for
processing. After the jobs
are complete, Jenkins
agents are automatically
deleted.

In this example, the pipeline
pulls code from the code
repository, packs the code
into an image, and pushes
the image to the SWR image
repository.

tomcat (This image needs to
be pulled to SWR.)

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

1.2 Resource and Cost Planning
Figure 1-3 and Table 1-3 describe the resources required in this example and how
they are related to each other.

Figure 1-3 Solution architecture

Table 1-3 Required resources and their prices

Resource Specifications Description

CCE Autopilot
cluster

● Cluster type: CCE
Autopilot

● Billing mode: pay-per-
use

● Cluster version: v1.28
● Add-ons: CoreDNS and

Kubernetes Metrics
Server

One cluster needs to be
created.
Cluster management and VPC
endpoints are billed. For
details, see Billing.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/productdesc-cce-autopilot/cce_12_0002.html

Resource Specifications Description

Pod Jenkins master:
● vCPUs: 4
● Memory: 4 GiB
● Storage: 30 GiB
Jenkins agent:
● vCPUs: 0.5
● Memory: 1 GiB
● Storage: 30 GiB

Two pods are required, one
for the Jenkins master and
the other for the Jenkins
agent. The functions of the
two pods are as follows:
● The Jenkins master is

responsible for job
scheduling and system
management.

● The Jenkins agent executes
specific build jobs.

Pods are billed. For details,
see Billing.

ECS ● Billing mode: pay-per-
use

● VM type: General
computing-plus

● Specifications: 2 vCPUs
and 4 GiB of memory

● OS: CentOS 7.6
● System disk: 40 GiB |

General purpose SSD
● EIP

– Type: exclusive EIP
– Bandwidth billing

option: traffic
– Bandwidth: 5

Mbit/s

This ECS must be in the same
VPC as the cluster. kubectl is
installed on this ECS to deliver
commands for creating
workloads, PVs, PVCs, and
secrets. After resources are
created, you can delete the
ECS in a timely manner to
avoid extra expenditures.
Deleting ECS does not affect
the use of Jenkins.
The ECS and EIP traffic are
billed. For details, see ECS
Billing.

SFS Turbo ● Billing mode: pay-per-
use

● Type: 40 MB/s/TiB
● Capacity: 1.2 TB

One SFS Turbo file system is
required. SFS Turbo provides
underlying storage resources
for clusters so that you can
use PVs and PVCs to provide
persistent storage for
workloads.
SFS Turbo is billed. For details,
see SFS Turbo Billing.

Load balancer
provided by ELB

● Billing mode: pay-per-
use

● Type: dedicated load
balancer

● Bandwidth billing
option: traffic

● Bandwidth: 5 Mbit/s

One load balancer is required.
The load balancer is used by
the LoadBalancer Service to
allow access to the workloads.
ELB is billed. For details, see
ELB Pricing Details.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

https://support.huaweicloud.com/intl/en-us/productdesc-cce-autopilot/cce_12_0002.html
https://support.huaweicloud.com/intl/en-us/price-ecs/ecs_billing_3000.html
https://support.huaweicloud.com/intl/en-us/price-ecs/ecs_billing_3000.html
https://support.huaweicloud.com/intl/en-us/price-sfsturbo/sfsturbo_billing_0006.html
https://support.huaweicloud.com/intl/en-us/price-elb/elb_billing_0003.html

Resource Specifications Description

SWR shared edition - One organization is required.
SWR is used to store the
images created in Building
and Executing a Pipeline on
Jenkins.
Billing is not involved.

1.3 Procedure

1.3.1 Deploying the Jenkins Master in the Cluster
Deploy the Jenkins master as a Deployment in the CCE Autopilot cluster to
manage jobs.

NO TE

The Jenkins version used in this example is 2.440.2. The strings on the Jenkins page may
vary depending on the version. The screenshots are for reference only.

Preparations
● Purchase a CCE Autopilot cluster. For details, see Buying a CCE Autopilot

Cluster.
● Prepare a Linux ECS that is in the same VPC as the cluster and has an EIP

bound. For details, see Purchasing and Using a Linux ECS. Check kubectl on
the ECS and connect to the cluster through kubectl.

● Create an SFS Turbo file system is in the same VPC as the cluster. For details,
see Creating a File System.

● Create an organization in SWR. This organization is in the same region as the
cluster. For details, see Creating an Organization.

Procedure

Step 1 Log in to the ECS. For details, see Logging In to a Linux ECS Using CloudShell.

Step 2 Create a PV and PVC of the SFS Turbo type for the Jenkins master to store
persistent data.

1. Create a YAML file named pv-jenkins-master.yaml for creating a PV. You can
change the file name as needed.

NO TE

A Linux file name is case sensitive and can contain letters, digits, underscores (_), and
hyphens (-), but cannot contain slashes (/) or null characters (\0). To improve
compatibility, do not use special characters, such as spaces, question marks (?), and
asterisks (*).

vim pv-jenkins-master.yaml

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0028.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0028.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0107.html
https://support.huaweicloud.com/intl/en-us/usermanual-sfsturbo/sfsturbo_01_0359.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0014.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_0185.html

The file content is as follows. In this example, only mandatory parameters are
involved. For more parameters, see Using an Existing SFS Turbo File System
Through a Static PV.
apiVersion: v1
kind: PersistentVolume
metadata:
 annotations:
 pv.kubernetes.io/provisioned-by: everest-csi-provisioner # Storage driver. The value is fixed to
everest-csi-provisioner.
 name: pv-jenkins-master # PV name. You can change the name.
spec:
 accessModes:
 - ReadWriteMany # Access mode. The value must be ReadWriteMany for SFS Turbo.
 capacity:
 storage: 500Gi # Requested PV capacity.
 csi:
 driver: sfsturbo.csi.everest.io # Storage driver that the mounting depends on. The value is fixed to
sfsturbo.csi.everest.io.
 fsType: nfs # Storage type. The value is fixed to nfs.
 volumeHandle: ea8a59b6-485c-xxx # SFS Turbo volume ID
 volumeAttributes:
 everest.io/share-export-location: ea8a59b6-485c-xxx.sfsturbo.internal:/ # Shared path of the SFS
Turbo volume
 persistentVolumeReclaimPolicy: Retain # Reclaim policy.
 storageClassName: csi-sfsturbo # StorageClass name of the SFS Turbo volume.

Press Esc to exit editing mode and enter :wq to save the file.

Table 1-4 Descriptions of key parameters

Parameter Examp
le
Value

Description

name pv-
jenkins
-
master

Indicates the PV name. You can use any name.
The name can contain 1 to 64 characters and
cannot start or end with a hyphen (-). Only
lowercase letters, digits, and hyphens (-) are
allowed.

accessMod
es

ReadW
riteMa
ny

Indicates the access mode. For SFS Turbo, the value
is fixed to ReadWriteMany.

storage 500Gi Indicates the requested PV capacity, in Gi.

volumeHan
dle

ea8a59
b6-485
c-xxx

Specifies the ID of an SFS Turbo volume.

How to obtain: On the CCE console, click in
the upper left corner and choose Storage >
Scalable File Service. In the navigation pane,
choose SFS Turbo > File Systems. In the list, click
the name of the target SFS Turbo file system. On
the details page, copy the content following ID.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0625.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0625.html#section3
https://console-intl.huaweicloud.com/en-us/cce2.0/?#/cce/cluster/list

Parameter Examp
le
Value

Description

everest.io/
share-
export-
location

ea8a59
b6-485
c-
xxx.sfs
turbo.i
nterna
l:/

Specifies the shared path of the SFS Turbo volume.
Multiple pods can access the path through the
network to share the same storage resource.

How to obtain: On the CCE console, click in
the upper left corner and choose Storage >
Scalable File Service. In the navigation pane,
choose SFS Turbo > File Systems. In the list, click
the name of the target SFS Turbo file system. On
the details page, copy the content following Shared
Path.

persistentV
olumeRecla
imPolicy

Retain Indicates the PV reclamation policy. Only the
Retain policy is supported.
Retain: When a PVC is deleted, the PV and
underlying storage resources are not deleted.
Instead, you must manually delete these resources.
After a PVC is deleted, the PV resource is in the
Released state and cannot be bound to the PVC
again.

storageClas
sName

csi-
sfsturb
o

Specifies the StorageClass name of an SFS Turbo
volume.
In this example, the built-in StorageClass is used
and its name is fixed to csi-sfsturbo.

2. Run the following command to create a PV:

kubectl create -f pv-jenkins-master.yaml

If the following information is displayed, the PV named pv-jenkins-master
has been created:
persistentvolume/pv-jenkins-master created

3. Create a YAML file named pvc-jenkins-master.yaml for creating a PVC. You
can change the file name as needed.
vim pvc-jenkins-master.yaml

The file content is as follows. In this example, only mandatory parameters are
involved. For more parameters, see Using an Existing SFS Turbo File System
Through a Static PV.
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: pvc-jenkins-master # PVC name. You can change the name.
 namespace: default # Namespace. This is also the namespace of the workload.
 annotations:
 volume.beta.kubernetes.io/storage-provisioner: everest-csi-provisioner # Storage driver. The value
is fixed to everest-csi-provisioner.
spec:
 accessModes:
 - ReadWriteMany # Access mode. The value must be ReadWriteMany for SFS Turbo.
 resources:
 requests:
 storage: 500Gi # Requested capacity of the PVC, which must be the same as the PV

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://console-intl.huaweicloud.com/en-us/cce2.0/?#/cce/cluster/list
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0625.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0625.html#section3

capacity.
 storageClassName: csi-sfsturbo # StorageClass name of the SFS Turbo file system, which must
be the same as that of the PV.
 volumeName: pv-jenkins-master # Name of the associated PV.

Press Esc to exit editing mode and enter :wq to save the file.

Table 1-5 Descriptions of key parameters

Parameter Example Value Description

name pvc-jenkins-master Indicates the PVC name. You can
use any name.
The name can contain 1 to 64
characters and cannot start or
end with a hyphen (-). Only
lowercase letters, digits, and
hyphens (-) are allowed.

namespace default Indicates the namespace, which
must be the same as the
namespace of the workload.

accessModes ReadWriteMany Indicates the access mode. For
SFS Turbo, the value is fixed to
ReadWriteMany.

storage 500Gi Indicates the requested PVC
capacity, in Gi.
The value must be the same as
the PV capacity requested in Step
2.1.

storageClassNa
me

csi-sfsturbo Indicates the StorageClass name.
The value must be the same as
the StorageClass of the PV in
Step 2.1.

volumeName pv-jenkins-master Specifies the name of the
associated PV.
The value must be the same as
the PV name in Step 2.1.

4. Run the following command to create a PVC:

kubectl create -f pvc-jenkins-master.yaml

If the following information is displayed, the PVC named pvc-jenkins-master
has been created:
persistentvolumeclaim/pvc-jenkins-master created

5. Verify that the PV has been bound to the PVC. After the PV and PVC are
created, they are automatically bound. The PVC can be mounted to the pod
only after the binding is successful. When both the PV and PVC are in the
Bound state, the PV has been bound to the PVC.
Run the following command to check the PV status:
kubectl get pv

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

If the value of STATUS is Bound, the PV is bound.
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
pv-jenkins-master 500Gi RWX Retain Bound default/pvc-jenkins-master csi-
sfsturbo 88s

Run the following command to check the PVC status:
kubectl get pvc

If the value of STATUS is Bound, the PVC is bound.
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
pvc-jenkins-master Bound pv-jenkins-master 500Gi RWX csi-sfsturbo 61s

When both the PV and PVC are in the Bound state, the PV has been bound to
the PVC.

Step 3 Use the jenkins/jenkins:lts image to create a Deployment named jenkins-master
and mount the PVC created in Step 2.4.

NO TE

In this example, the jenkins/jenkins:lts image (Docker image of the Jenkins LTS version) is
used. The LTS version is a long-term release provided by Jenkins. It is relatively stable and
will receive security updates and bug fixes for a longer time. It is suitable for production
systems that require a stable environment. For more information, see LTS Release Line.
In this example, the Jenkins master is deployed as a Deployment. The Jenkins master is
mainly used to manage and schedule jobs and does not depend on persistent data.
Deploying the Jenkins master as a Deployment can improve system flexibility and
scalability.
You can select different images and workload types as required.

1. Create a YAML file named jenkins-master for creating the jenkins-master
workload. You can change the file name as needed.
vim jenkins-master.yaml

The file content is as follows. In this example, only mandatory parameters are
involved. For details about more parameters, see Creating a Deployment.
apiVersion: apps/v1
kind: Deployment
metadata:
 name: jenkins-master # Name of the Deployment.
 namespace: default # Namespace, which must be the same as the name of the PVC.
spec:
 replicas: 1 # Number of pods running the Deployment.
 selector:
 matchLabels: # Workload label selector, which is used to match the selected pod to ensure that
the required pod can be selected for the Deployment.
 app: jenkins-master
 template:
 metadata:
 labels: # Pod label, which must be the same as the value of matchLabels of the workload to
ensure that the pod running the Deployment can be managed in a unified manner.
 app: jenkins-master
 spec:
 containers:
 - name: container-1
 image: jenkins/jenkins:lts # The jenkins/jenkins:lts image is used.
 resources: # Used to configure the resource limit and request of the container
 limits: # Maximum number of resources that can be used by the container
 cpu: '4'
 memory: 4Gi
 requests: # Resources required for starting the container
 cpu: '4'
 memory: 4Gi
 volumeMounts: # Volume mounted to the container
 - name: pvc-jenkins-master

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

https://www.jenkins.io/download/lts/
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0047.html

 mountPath: /var/jenkins_home # Mount path. Generally, the value is /var/jenkins_home.
 volumes: # Storage volume used by the pod, which corresponds to the created PVC.
 - name: pvc-jenkins-master # Volume name. You can change the name.
 persistentVolumeClaim:
 claimName: pvc-jenkins-master # The PVC to be used
 imagePullSecrets:
 - name: default-secret

Press Esc to exit editing mode and enter :wq to save the file.
2. Run the following command to create a Deployment named jenkins-master:

kubectl create -f jenkins-master.yaml

Information similar to the following will be displayed:
deployment/jenkins-master created

3. To ensure that the Deployment is created, check whether the pod created for
the workload is in the Running state.
kubectl get pod

If STATUS of the pod whose name is jenkins-master-xxx is Running, the
Deployment has been created.
NAME READY STATUS RESTARTS AGE
jenkins-master-6f65c7b8f7-255gn 1/1 Running 0 72s

Step 4 Create Services for accessing the Jenkins master.

The Jenkins container image has two ports: 8080 and 50000. You need to
configure them separately. Port 8080 is used for web login, and port 50000 is used
for the connection between the Jenkins master and Jenkins agent. In this example,
two Services need to be created. For details, see Table 1-6.

NO TE

In this example, the Jenkins agent created in the subsequent steps is in the same cluster as
the Jenkins master. Therefore, the Jenkins agent uses the ClusterIP Service to connect to the
Jenkins master.

When the Jenkins web page needs to communicate with the Jenkins agent, port 8080 must
be opened for the Jenkins agent. In this example, both ports 8080 and 50000 are opened
for the ClusterIP Service.

If the Jenkins agent needs to connect to the Jenkins master across clusters or over the
public network, select an appropriate Service type.

Table 1-6 Service

Service
Type

Function Basic Parameters

LoadBal
ancer

Allows access to
the web from the
public network.

● Service name: jenkins-web (You can change
the name if needed.)

● Container port: 8080
● Access port: 8080

ClusterI
P

Used by the
Jenkins agent to
connect to the
Jenkins master

● Service name: jenkins-agent (You can change
the name if needed.)

● Container port 1: 8080
● Access port 1: 8080
● Container port 2: 50000
● Access port 2: 50000

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

1. Create a YAML file named jenkins-web to create a LoadBalancer Service. You
can change the file name as needed.
This example describes how to create a Service using an automatically created
load balancer. If you want to use an existing load balancer, see Using kubectl
to Create a Service (Using an Existing Load Balancer).
vim jenkins-web.yaml

The file content is as follows. In this example, only mandatory parameters are
involved. For more parameters, see Using kubectl to Automatically Create a
Load Balancer.
apiVersion: v1
kind: Service
metadata:
 name: jenkins-web # Service name. You change the name as needed.
 namespace: default # Namespace of the Service.
 labels:
 app: jenkins-web # Label of the Service.
 annotations: #Automatic creation of a load balancer
 kubernetes.io/elb.class: performance # Load balancer type. Only dedicated load balancers are
supported.
 kubernetes.io/elb.autocreate: '{
 "type": "public",
 "bandwidth_name": "cce-bandwidth-xxx",
 "bandwidth_chargemode": "traffic",
 "bandwidth_size": 5,
 "bandwidth_sharetype": "PER",
 "eip_type": "5_bgp",
 "available_zone": ["cn-east-3a"
],
 "l4_flavor_name": "L4_flavor.elb.s1.small"
 }'
spec:
 selector: # Used to select the matched pod.
 app: jenkins-master
 ports: # Service port information.
 - name: cce-service-0
 targetPort: 8080 # Port used by the Service to access the target pod. This port is closely related to
the application running in the pod.
 port: 8080 # Port for accessing the Service. It is also the listening port of the load balancer.
 protocol: TCP
 type: LoadBalancer # Service type. In this example, this is a LoadBalancer Service.

Press Esc to exit editing mode and enter :wq to save the file.

Table 1-7 Key parameters in the kubernetes.io/elb.autocreate field

Parame
ter

Example
Value

Description

type public Indicates the network type of the load balancer.
– public: indicates a public network load

balancer with an EIP bound to allow access
from both public and private networks.

– inner: indicates a private network load
balancer, which does not need an EIP and can
be accessed only over a private network.

The Service is used to provide external web
access, so set this parameter to public.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0681.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0681.html#section3
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0681.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0681.html#section4

Parame
ter

Example
Value

Description

bandwi
dth_na
me

cce-
bandwidth-
xxx

Specifies the bandwidth name. The default value
is cce-bandwidth-xxx, where xxx can be
changed as needed.
The value can contain 1 to 64 characters. Only
letters, digits, underscores (_), hyphens (-), and
periods (.) are allowed.

bandwi
dth_cha
rgemod
e

traffic Indicates the bandwidth billing option.
– bandwidth: You are billed by a fixed

bandwidth.
– traffic: You are billed based on the traffic you

actually use.

bandwi
dth_size

5 Indicates the bandwidth. The default value is 1
Mbit/s to 2,000 Mbit/s. Configure this parameter
based on the bandwidth allowed in your region.
The minimum increment for modifying the
bandwidth varies depending on the allowed
bandwidth. You can only select an integer
multiple of the minimum increment.
– The minimum increment is 1 Mbit/s if the

allowed bandwidth does not exceed 300
Mbit/s.

– The minimum increment is 50 Mbit/s if the
allowed bandwidth ranges from 300 Mbit/s to
1,000 Mbit/s.

– The minimum increment is 500 Mbit/s if the
allowed bandwidth exceeds 1,000 Mbit/s.

bandwi
dth_sha
retype

PER Specifies the bandwidth type. The only value PER
indicates a dedicated bandwidth.

eip_type 5_bgp Specifies the EIP type.
– 5_bgp: Dynamic BGP
– 5_sbgp: Static BGP

availabl
e_zone

cn-east-3a Specifies the AZs where the load balancer is
located. This parameter is only available for
dedicated load balancers.
You can obtain all supported AZs by getting the
AZ list.

l4_flavo
r_name

L4_flavor.elb.
s1.small

Specifies the flavor name of the Layer 4 load
balancer. This parameter is only available for
dedicated load balancers.
You can obtain all supported types by getting
the flavor list.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/api-elb/ListAvailabilityZones.html
https://support.huaweicloud.com/intl/en-us/api-elb/ListAvailabilityZones.html
https://support.huaweicloud.com/intl/en-us/api-elb/ListFlavors.html#section5
https://support.huaweicloud.com/intl/en-us/api-elb/ListFlavors.html#section5

2. Run the following command to create a LoadBalancer Service to provide

external web access:
kubectl create -f jenkins-web.yaml

Information similar to the following will be displayed:
service/jenkins-web created

3. Create a YAML file named jenkins-agent to create a ClusterIP Service. You
can change the file name as needed.
vim jenkins-agent.yaml

The file content is as follows. In this example, only mandatory parameters are
involved. For details about more parameters, see ClusterIP.
apiVersion: v1
kind: Service
metadata:
 name: jenkins-agent # Service name. You change the name as needed.
 namespace: default # Namespace of the Service.
 labels:
 app: jenkins-agent
spec:
 ports: # Service port information.
 - name: service0 # Port 1: used to ensure that the external access address of the web is the
same as the Jenkins agent access address.
 port: 8080 # Port for accessing a Service.
 protocol: TCP # Protocol used for accessing a Service. The value can be TCP or UDP.
 targetPort: 8080 # Port used by the Service to access the target container. This port is closely
related to the application running in a container.
 - name: service1 #Port 2: used for the connectivity between the Jenkins master and Jenkins
agent.
 port: 50000
 protocol: TCP
 targetPort: 50000
 selector: # Label selector. A Service selects a pod based on the label and forwards the
requests for accessing the Service to the pod.
 app: jenkins-master
 type: ClusterIP # Type of a Service. ClusterIP indicates that a Service is only reachable from
within the cluster.

Press Esc to exit editing mode and enter :wq to save the file.
4. Run the following command to create a ClusterIP Service for the Jenkins

agent to connect to the Jenkins master:
kubectl create -f jenkins-agent.yaml

Information similar to the following will be displayed:
service/jenkins-agent created

5. Check whether the Services are successfully created.
kubectl get svc

The following information is displayed. You can log in to Jenkins using {EIP of
the public network load balancer}:{8080}.
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
jenkins-agent ClusterIP 10.247.22.139 <none> 8080/TCP,50000/TCP 34s
jenkins-web LoadBalancer 10.247.76.78 xx.xx.xx.xx,192.168.0.239 8080:31694/TCP 15m
kubernetes ClusterIP 10.247.0.1 <none> 443/TCP 3h3m

Step 5 Log in to and initialize Jenkins.

1. In the address box of the browser, enter {EIP of the public network load
balancer}:{8080} to open the Jenkins configuration page.

2. Obtain the initial administrator password from the Jenkins pod upon the first
login.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0011.html

a. Return to the ECS and run the following command to query the pod
name:
kubectl get pod|grep jenkins-master

The following information is displayed. jenkins-
master-6f65c7b8f7-255gn indicates the pod name.
jenkins-master-6f65c7b8f7-255gn 1/1 Running 0 144m

b. Run the following command to enter the pod (jenkins-
master-6f65c7b8f7-255gn):
kubectl exec -it jenkins-master-6f65c7b8f7-255gn -- /bin/sh

c. Run the following command to obtain the initial administrator password:
cat /var/jenkins_home/secrets/initialAdminPassword

3. Install the recommended add-ons and create an administrator as prompted
upon the first login. After the initial configuration is complete, the Jenkins
web page is displayed.

Figure 1-4 Jenkins web page

----End

1.3.2 Configuring the Jenkins Agent
In this section, you need to complete the following tasks:

● Install the Kubernetes plugin on the Jenkins web page and configure cluster
information in the cloud for connecting to the cluster.

● Configure a pod template for dynamically creating Jenkins agent pods in the
cloud.

Before the installation and configuration, complete Preparations for the Cluster.

Preparations for the Cluster
Before configuring the Jenkins agent, you need to perform some operations on the
cluster to support subsequent configuration of the Jenkins agent.

Step 1 Return to the CCE console and click the cluster name. In the Connection
Information area on the right, click Configure to download the kubectl
configuration file, which will be used as the credential for Jenkins to connect to
the cluster.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://console-intl.huaweicloud.com/cce2.0/?#/cce/cluster/list

Figure 1-5 Connection Information

Step 2 In the navigation pane of the cluster console, choose Storage. In the upper right
corner, click Create PVC. In the Create PVC dialog, configure the following
parameters and click Create. The created PVC persistently stores the data
generated when the Jenkins agent completes jobs.

Figure 1-6 Creating a PVC

● PVC Type: SFS Turbo
● PVC Name: jenkins-agent
● Creation Method: Create new
● SFS Turbo: Select the SFS Turbo volume used in Step 2.
● PV Name: pv-efs-jenkins-agent

Step 3 Return to the ECS and create a secret with SWR authentication information as the
credential for pushing images to SWR.

1. Download jq to process and operate JSON data. You can query, filter, modify,
and format JSON data. The following uses an ECS running CentOS 7.6 as an
example.
yum install jq

2. Create the Docker registry secret to store SWR authentication information.
Extract and decode the SWR authentication information and save it to
the /tmp/config.json file.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

– docker-server: Enter the SWR image repository address in the format of
swr.[Region].myhuaweicloud.com.

Obtain the region from Regions and Endpoints. Replace [Region] with
the actual region name, for example, swr.cn-east-3.myhuaweicloud.com
for CN East-Shanghai1.

– docker-username: Enter the username in the SWR login command.

To obtain the username, log in to the SWR console, click Login
Command in the upper right corner of the Dashboard page, and view
the command on the Temporary login command tab. The content
following -u in the command is the username.

– docker-password: Enter the password in the SWR login command.

The content following -p in the command on the Temporary login
command tab is the password.

NO TE

The validity period of the temporary login command is 6 hours. After the
temporary login command expires, you need to reconfigure the validity period.

You can select Long-term login command on the Login Command page and
configure related information as prompted to obtain the long-term login
command and then the username and password.

Figure 1-7 Obtaining docker-username and docker-password

kubectl create secret docker-registry swr-secret \
 --docker-server=https://swr.xxx.myhuaweicloud.com \
 --docker-username=xxx \
 --docker-password=xxx \
 --dry-run=client -o json | jq -r '.data.".dockerconfigjson"' | base64 -d > /tmp/config.json

3. Use the /tmp/config.json file to create a generic secret. The secret can be
directly mounted to the pod of the Jenkins agent created later.
kubectl create secret generic swr-secret --from-file=/tmp/config.json -n default

----End

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://console-intl.huaweicloud.com/en-us/apiexplorer/#/endpoint/SWR
https://console-intl.huaweicloud.com/en-us/swr/

Configuring Cloud Information on the Jenkins Web Page

Step 1 Return to the Jenkins web page. In the navigation pane, choose Manage Jenkins
> System Configuration > Plugins > Available plugins. On the Available
plugins tab, search for and install the Kubernetes plugin. The Kubernetes plugin
dynamically creates a pod for the Jenkins agent in the cluster and deletes the pod
after it is used.

The plugin version may change over time. Select a plugin version as required. In
this example, the plugin version is 4295.v7fa_01b_309c95. You can install other
plugins as required, such as Kubernetes CLI Plugin (which allows kubectl to be
configured for a job to interact with Kubernetes clusters).

Figure 1-8 Searching for the Kubernetes plugin

Step 2 In the upper left corner of the current page, click Manage Jenkins and then
choose Security > Security. In the CSRF Protection area, select Enable proxy
compatibility and click Apply.

NO TE

Selecting Enable proxy compatibility is to avoid "Error 403 No valid crumb was included in
the request".

Jenkins uses CSRF protection to prevent cross-site request forgery attacks. When a user
performs sensitive operations (such as building a project), Jenkins requires a valid "crumb".
When a reverse proxy (such as Nginx or Apache) or load balancer is used, requests are
forwarded from the client to the Jenkins server. The proxy or load balancer may modify the
request header, and the CSRF token (crumb) will be lost or will not be passed correctly,
resulting in the "Error 403 No valid crumb was included in the request" error.

After Enable proxy compatibility is selected, Jenkins uses a fault tolerance mechanism to
ensure that it can properly process transferred requests in the proxy environment, so that
CSRF tokens (crumbs) can be correctly transferred and verified through the proxy.

Figure 1-9 Selecting Enable proxy compatibility

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://plugins.jenkins.io/kubernetes
https://plugins.jenkins.io/kubernetes-cli/

Step 3 In the upper left corner of the current page, click Manage Jenkins, choose
Security > Credentials, choose Stores scoped to Jenkins > System > Global
credentials (unrestricted), and click Add Credentials on the right to add a
cluster credential.

On the New credentials page, set Kind to Secret file, Scope to Global (Jenkins,
nodes, items, all child items, etc), and File to the downloaded kubectl
configuration file. Retain the default values for other parameters and click Create.

Step 4 Create a cloud, which will be used to configure cluster information so that Jenkins
can match the correct cluster.

1. In the upper left corner of the current page, click Manage Jenkins, then
choose System Configuration > Clouds, click New Cloud to create a cloud,
and enter the basic information about the cloud.
Enter a cloud name, select Kubernetes for Type, and click Create.

Figure 1-10 Basic cloud information

2. Specify cluster information.

Figure 1-11 Cluster details

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Table 1-8 Cluster parameters

Paramet
er

Example Value Description

Kubernet
es URL

https://
kubernetes.defaul
t.svc.cluster.local:
443

Indicates the address of the cluster APl
Server.
You can directly enter https://
kubernetes.default.svc.cluster.local:443,
which is the standard DNS address for
accessing the Kubernetes API server in the
cluster.

Kubernet
es
Namespa
ce

default Specifies the namespace where the
dynamically created Jenkins agent is
located.
NOTE

The namespace must be the same as that of
the jenkins-master workload created in Step
3.

Credentia
ls

xxx-
kubeconfig.yaml

Specifies the cluster connection credential.
Select the credential uploaded in Step 3.
NOTE

After selecting a credential, click Test
Connection on the right to check whether the
cluster can be connected.
If Connected to Kubernetes xxx is displayed
in the command output on the left, the cluster
can be connected.

Jenkins
URL

http://
10.247.22.139:808
0

Indicates the Jenkins access path.
Enter the IP address for intra-cluster
access in Step 4. The port number is
8080.

Jenkins
tunnel

10.247.22.139:500
00

Indicates the tunnel that is used to
establish connectivity between the Jenkins
master and Jenkins agent.
Enter the IP address for intra-cluster
access in Step 4. The port number is
50000.

3. Confirm the preceding information and click Save.

Step 5 Configure a pod template. With this template, Jenkins can create pods for the
Jenkins agent in the cluster as required and use the created pods to run Jenkin
jobs. The pods are created on demand and are automatically deleted after the
jobs are complete.

1. Click the cloud name and choose Pod Templates > Add a pod template.
2. Configure basic parameters for the pod template.

– Name: name of the pod template. You can name the pod template as
needed, for example, jenkins-agent.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

– Namespace: namespace of the pod to be created. The namespace must
be the same as that in the cloud, for example, default.

– Other parameters: You can configure them as required. In this example,
retain the default values.

Figure 1-12 Configuring basic parameters for the pod template

3. Add a container template. In this example, three container templates need to
be added. The parameters are described in Table 1-9 in the form of container
1, container 2, and container 3. You can add three container templates based
on the table.

– Container 1: The jenkins/inbound-agent:latest image is used to connect
the Jenkins agent to the Jenkins master to ensure continuous job
execution.

– Container 2: The maven:3.8.1-jdk-8 image is used to execute packing
jobs in the pipeline.

– Container 3: The gcr.io/kaniko-project/executor:v1.23.2-debug image is
used to build Docker images in the container.

NO TE

You should push the three images to the SWR image repository in advance to
improve the container creation speed and reliability. For details, see Uploading
an Image Through a Client.

With images stored in the SWR image repository, Jenkins does not need to pull
images from external sources, accelerating container creation and reducing
network latency. This also reduces the risk of container creation failures caused
by network fluctuation or image pull failures, ensuring a more stable, efficient
build process.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0011.html

Figure 1-13 Container template parameters

Table 1-9 Container template parameters

Paramet
er

Example Value Description

Name Container 1: jnlp
Container 2:
maven
Container 3:
kaniko

Indicates the name of each container
created in the cluster.
The name of container 1 is fixed to jnlp.
You can name other containers as needed.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Paramet
er

Example Value Description

Docker
image

Container 1:
jenkins/inbound-
agent:latest
Container 2:
maven:3.8.1-jdk-8
Container 3:
gcr.io/kaniko-
project/
executor:v1.23.2-
debug

Indicates the image required for creating
a container.
If you have pushed the images to SWR,
change the value to the image path in
SWR.

Working
directory

Containers 1 to
3: /home/jenkins/
agent

Indicates the default file storage location
of the containers during the execution of
build jobs. You can change the directory
as needed.

Comman
d to run

Containers 1 to 3:
sleep

Indicates the command that is executed
when the container is started.

Argument
s to pass
to the
command

Containers 1 to 3:
9999999

Specifies the parameters to be transferred
to Command to run.
The sleep 9999999 command indicates
that the container keeps running until it
already runs for 9,999,999 seconds or is
manually stopped. This configuration is
used to keep the container active and
prevent the container from automatically
exiting when there is no job.

4. Click Add Volume, select Persistent Volume Claim, and configure the

parameters. The PVC is mounted to all containers to provide persistent
storage for each container.
– Claim Name: Enter the name of the PVC created in Step 2.
– Mount path: Enter the mount path. The value is fixed to /root/.m2.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

Figure 1-14 Configuring a PVC

5. Click Add Volume again, select Secret Volume, and configure the
parameters. When a pipeline job is being executed, the secret is used as a
credential for the kaniko container to push images to SWR.
– Secret Name: Enter the name of the secret created in Step 3.
– Mount path: Enter the mount path. The value is fixed to /

kaniko/.docker.

Figure 1-15 Configuring a secret

6. Configure the secret for pulling the image. In this example, default-secret is
used.

NO TE

When pulling images in your account from SWR, you can use this secret. To use
images in other accounts, you need to create a secret for a third-party image
repository. For details, see Creating a Secret for a Third-Party Image Repository.

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/usermanual-cce-autopilot/cce_11_0009.html#section2

Figure 1-16 Configuring the image pull secret

7. Confirm the preceding information and click Save.

----End

1.3.3 Building and Executing a Pipeline on Jenkins

Building a Pipeline
Build a pipeline in Jenkins to pull code from the code repository, pack the code
into an image, and push the image to the SWR image repository.

Step 1 Click Dashboard in the upper left corner of the page to switch to the Jenkins
Dashboard page. In the navigation pane on the right, click New Item.

Step 2 Enter an item name (for example, test-pipe) and select Pipeline.

Figure 1-17 Pipeline

Step 3 Configure only the pipeline script and retain the default values for other
parameters.

The following pipeline script is for reference only. You can modify the script
content based on your service requirements. For details about the syntax, see
Pipeline.

def swr_region = "cn-east-3"
def organization = "container"

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

https://www.jenkins.io/doc/book/pipeline/

def git_repo = "http://github.com/xxx.git"
def app_git_branch = "master"

podTemplate(
inheritFrom: 'jenkins-agent', // Replace the value with the name of the pod template created in Step 5.
cloud: 'ap-test' // Replace the value with the name of the cloud created in Step 4.
) {
 // Pull the code from the code repository.
 node(POD_LABEL) {
 stage('Pull the code.') {
 echo "pull clone"
 git branch: "${app_git_branch}", url: "${git_repo}"
 }

 // Use the maven container to pack the code pulled from the code repository. (This packing method
applies only to Java. Use another packing method for other languages.)
 container('maven'){
 stage ('Pack the code.') {
 echo "build package"
 sh "mvn clean package -DskipTests"
 }
 }

 // Use the kaniko container to push the packed code to SWR and name the image tomcat.
 container('kaniko'){
 stage('Push the image.') {
 echo "build images and push images"
 sh "/kaniko/executor -f Dockerfile -c . -d swr.${swr_region}.myhuaweicloud.com/${organization}/
tomcat:${BUILD_ID} --force"
 }
 }
}
}

Table 1-10 Pipeline script parameters

Paramete
r

Example Value Description

swr_region cn-east-3 Region where the SWR image repository is
located. For details, see Regions and
Endpoints.
NOTE

The SWR image repository is used to store images
packaged by code. The region must be the same as
that in Step 3.

organizati
on

container Organization name in SWR. You can enter any
organization name as needed.

git_repo https://
github.com/
xxx.git

Specific address where the code is stored, which
is the address of the code library.

app-git-
branch

master Branch of the code library.

Step 4 Click Save.

----End

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

https://developer.huaweicloud.com/intl/en-us/endpoint
https://developer.huaweicloud.com/intl/en-us/endpoint

Executing the Pipeline and Viewing the Execution Result

After the pipeline is executed, a pod named pipe-xxx will be automatically created
in the cluster, and three containers (named jnlp, kaniko, and maven) will be
created in the pod based on the information in the pod template. The pod pulls
code from the code repository, packs the code into an image, and pushes the
image to the SWR image repository. After the operations are complete, the pod is
automatically deleted.

Step 1 In the navigation pane, choose Build Now to execute the pipeline job.

Step 2 Return to the CCE console and click the cluster name. In the navigation pane,
choose Workloads. On the Pods tab, view the pod created by the pipeline.

Figure 1-18 Pod created by the pipeline

Step 3 Click More > View Container in the Operation column. You can see that three
containers are created based on the pod template.

Figure 1-19 Creating a container

Step 4 Verify that the pod has been deleted automatically. After the code is pulled from
the code repository and packed into an image, and the image is pushed to the
SWR image repository, the pod will be automatically deleted.

Figure 1-20 Automatic pod deletion

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

https://console-intl.huaweicloud.com/en-us/cce2.0/?#/cce/cluster/list

Step 5 Log in to the SWR console and verify that the Tomcat image is available in the
SWR image repository.

Figure 1-21 Pushed image

----End

Follow-up Operations: Releasing Resources
To avoid additional expenditures, release resources promptly if you no longer need
them.

Step 1 Log in to the CCE console. In the navigation pane, choose Clusters.

Step 2 Locate the cluster, click in the upper right corner of the cluster card, and click
Delete Cluster.

Step 3 In the displayed Delete Cluster dialog box, delete related resources as prompted.

Enter DELETE and click Yes to start deleting the cluster.

It takes 1 to 3 minutes to delete a cluster. If the cluster name disappears from the
cluster list, the cluster has been deleted.

Step 4 Log in to the ECS console. In the navigation pane, choose Elastic Cloud Server.
Locate the target ECS and click More > Delete.

In the displayed dialog, select Delete the EIPs bound to the ECSs and Delete all
data disks attached to the ECSs, and click Next.

Figure 1-22 Deleting ECSs

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

https://console-intl.huaweicloud.com/en-us/swr/
https://console-intl.huaweicloud.com/en-us/cce2.0/?#/cce/cluster/list
https://console-intl.huaweicloud.com/ecm/

Enter DELETE and click OK to start deleting the ECS.

It takes 0.5 minutes to 1 minute to delete an ECS. If the ECS name disappears
from the ECS list, the ECS has been deleted.

Figure 1-23 Confirming the deletion

----End

Cloud Container Engine
Best Practices 1 Deploying Jenkins in a CCE Autopilot Cluster

Issue 01 (2025-01-03) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

	Contents
	1 Deploying Jenkins in a CCE Autopilot Cluster
	1.1 Overview
	1.2 Resource and Cost Planning
	1.3 Procedure
	1.3.1 Deploying the Jenkins Master in the Cluster
	1.3.2 Configuring the Jenkins Agent
	1.3.3 Building and Executing a Pipeline on Jenkins

